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Abstract: Rydberg radicals are transient polyatomic species stable with respect to dissociation in excited electronic states but 
dissociative on the ground-state surface. This paper proposes that these systems be treated theoretically by Rayleigh-Schrodinger 
perturbation theory (RSPT) that reduces to a frozen-core model in zeroth order. Special computational techniques permit 
the use of very large Gaussian basis sets for the Rydberg orbital space. The zeroth-order equations are solved to high accuracy, 
probably to within 10 cm"1, for Rydberg orbital energies of NH4 as well as for the isoelectronic sodium atom. Energies, force 
constants, Coriolis coupling constants, Jahn-Teller parameters, orbital radii, and transition moments are reported for Rydberg 
states of the ammonium radical up through the 2A1(Ss) level. Serious conflicts arise in comparing theoretical, spectroscopic, 
and molecular-beam results for NH4 and ND4. Some key areas for further investigation are outlined, e.g., resolution of the 
conflict between spectroscopic and molecular-beam values for the lifetime of the metastable ground state, and a 3000-cm"1 

discrepancy between experimental and best theoretical estimate of the frequency of the Schuster band. 

I. Introduction 

Bernstein1 was one of the first to suggest that free radicals of 
the type AH might be stable with respect to dissociation into A 
plus a hydrogen atom, where A is a closed-shell molecule with 
sufficiently large proton affinity such as NH3 or H2O. There exists 
in the literature conflicting experimental2,3 and theoretical2"6 

evidence concerning such radicals. Very recently new experimental 
results bearing on this subject have begun to appear from two 
different sources, namely, high-resolution electronic spectrosco­
py7"10 and neutralized-ion-beam experiments.11 Motivated by 
these developments we have undertaken a series of accurate ab 
initio electronic-structure calculations of AH radicals. Herzberg's 
observation in 1979 of band spectra of triatomic hydrogen 
prompted theoretical studies of that system using a simple fro­
zen-core model (Koopmans theorem).12"14 The present paper 
extends that analysis to the NH4 radical and defines a scheme, 
based on Rayleigh-Schrodinger perturbation theory, for system­
atically improving the theoretical model. As in the earlier study 
of triatomic hydrogen,12 we report in this paper a number of 
spectroscopic properties obtained by using the frozen-core model, 
i.e., zeroth-order results in perturbation theory for low-lying excited 
states of NH4. To estimate energy errors inherent in the fro­
zen-core model we carry out a similar calculation for the iso­
electronic sodium atom for which experimental results are readily 
available. The second paper in this series will be concerned with 
the dissociation process NH4 —*• NH3 + H on the ground-state 
potential energy surface, and so addresses issues more relevant 
to the beam experiments.11 Subsequent papers deal with cor­
rections coming from higher-order terms in the perturbation ex­
pansion. 

(1) H. J. Bernstein, J. Am. Chem. Soc, 85, 484 (1963). 
(2) C. E. Melton and H. W. Joy, J. Chem. Phys., 46, 4275 (1967); 48, 

5286 (1968). 
(3) K. S. E. Niblaeus, B. O. Roos, and E. M. Siegbahn, Chem. Phys., 25, 

207 (1977), and references cited therein concerning the H3O radical. 
(4) J. I. Horvath, /. Chem. Phys., 19, 978 (1951); D. M. Bishop, ibid., 40, 

432 (1964). 
(5) W. Strehl, H. Hartmann, K. Hensen, and W. Sarholz, Theor. Chim. 

Acta, 18, 290 (1970). 
(6) W. A. Lathan, W. J. Hehre, L. A. Curtis, and J. A. Pople, J. Am. 

Chem. Soc, 93, 6377 (1971). 
(7) G. Herzberg, J. Chem. Phys., 70, 4806 (1979). 
(8) I. Dabrowski and G. Herzberg, Can. J. Phys., 58, 1238 (1980). 
(9) G. Herzberg and J. K. G. Watson, Can. J. Phys., 58, 1250 (1980); G. 

Herzberg, H. Lew, J. J. Sloan, and J. K. G. Watson, ibid., 59, 428 (1981). 
(10) G. Herzberg, Faraday Discuss. Chem. Soc, 71, 165 (1981). 
(11) B. W. Williams and R. F. Porter, J. Chem. Phys., 73, 5598 (1980). 
(12) H. F. King and K. Morokuma, J. Chem. Phys., 71, 3213 (1979). 
(13) M. Jungen, J. Chem. Phys., 71, 3540 (1979). 
(14) R. L. Martin, J. Chem. Phys., 71, 3541 (1979). 

The five lowest excited electronic states of H3 and D3 have now 
been well characterized by detailed analyses of four electronic 
bands observed in emission.8,9 Transitions to the dissociative 
ground state are too diffuse to be observed. Spectral lines involving 
transitions to the first Rydberg state (the lowest 2 A/ state) are 
broadened corresponding to a lifetime of about 10"12 s8 for that 
state. The higher Rydberg states have appreciably longer half-
lives. All of these Rydberg states (the 2A1' state and higher 
electronic states) are stable with respect to dissociation into H2 

plus H, and all have very nearly the same geometry as that of 
the H3

+ ion. Thus, one can think of the triatomic hydrogen radical 
as a gas-phase H3

+ ion which has captured an electron in an outer 
orbital. The electron makes radiative transitions to lower and lower 
Rydberg levels until it finally decays into the ground electronic 
state at which point the molecule dissociates. Dabrowski and 
Herzberg have given the name "Rydberg radicals" to these 
transient polyatomic species which are stable only in excited states.8 

Similar spectral information is becoming available for the 
ammonium radical10 but is presently not nearly so complete as 
that for the prototype Rydberg radical H3. Two band systems 
are currently under investigation, namely, the Schuster band 
observed near 5639 A (near 5782 A in ND4) and the Schiiler 
bands observed near 6635 A (near 6750 A in ND4). Although 
some of these spectral features have been observed for over 100 
years, only within the past year has it been established that the 
carrier is, in fact, the ammonium radical.10 

A number of early theoretical investigations using the one-center 
expansion method treated the ammonium radical,2,4,5 but only one 
of these5 attempted to compute the Rydberg levels now thought 
to be responsible for the observed spectra. The present paper 
extends the early work of Strehl et al.5 using a nearly complete, 
multicenter Gaussian orbital basis. Broclawik, Mrozek, and Smith 
have recently carried out electronic-structure calculations for the 
ammonium radical using the X-a method,15a and Raynor and 
Herschback (RH) have studied a series of first-row AH radicals 
using SCF methods in a Slater basis.15b A brief comparison of 
the Raynor-Herschback results with our more accurate NH4 

calculations is presented below. 
Lathan et al. (LHCP) also used a multicenter Gaussian basis 

in a calculations of the ground-state potential energy surface for 
the ammonium radical.6 They found no barrier for dissociation 
into ammonia plus a hydrogen atom. We return to this issue in 
paper 2 but merely comment here that instability predicted by 
LHCP is a spurious result due to orbital basis set deficiencies. 
Experimental evidence from fragmentation in radical beams im-

(15) (a) E. Broclawik, J. Mrozek, and V. H. Smith, Jr., in press; (b) S. 
Raynor and D. R. Herschbach, J. Phys. Chem., submitted. 
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plies that ND4 is metastable with a half-life of about 1 ^s and 
an exothermicity of 0.22 eV. Our ab initio results are in qualitative 
agreement with this picture. 

II. Computational Method 
Perturbation Theory. Let the nonrelativistic electronic Ham-

iltonian for a Rydberg radical be expressed as 

H = H 0 + H1 (1) 

where 

H0 = E f(0 (2) 
i - i 

and f is the closed-shell Fock operator for the parent cation 
NN NFCO 

f(0 = -1/2V,2 - E Zarari + E [21,(0 " K,(0] (3) 
a=[ 1=1 

The perturbation operator is 
NE NE NFCO 

H1 = E V - E E [2J,(«)-K,(0] (4) 
Kj 1=1 /=1 

The limiting summation indices NE, NN, and NFCO define the 
number of electrons, nuclei, and frozen-core orbitals, respectively. 

From Rayleigh-Schrodinger perturbation theory (RSPT) the 
zeroth- and first-order equations are 

(H0 - £ k ° ) V = 0 (5) 

(H0 - £ k
0 ) V + (H1 - £k ' )*k° =0 (6) 

The zeroth-order function is a Slater determinant of NFCO doubly 
occupied frozen-core orbitals plus a singly occupied virtual orbital 
of the parent cation. 

* k ° = ^ , ^ ! . . . ^ N F C O ^ N F C O ^ ] (7) 

f<Ak = «k0k (8) 

NFCO 

£k° = 2 E « ,+ «k (9) 
i = i 

The frozen-core energy, £k
FC, is the expectation value of the true 

Hamiltonian averaged over the zeroth-order wave function. This 
is also the (RSPT) energy computed to first-order. 

£k
FC ^ <*k°|H|M/k°> = £k

c + Ek
l = £core + ek (10) 

Here E03n is the SCF energy of the parent cation. Similarly, other 
properties, such as angular momentum, will be computed as the 
expectation value of the appropriate operator averaged over ^ k ° . 

The first-order wave function, ^ k ' , consists of single excitations 
out of core orbitals (static core polarization) plus double excitations 
out of all occupied pairs. A consequence of our choice of H0 is 
that single excitations out of the occupied Rydberg orbital, <pk —>• 
0k<, make no contribution to ^ k ' . In effect, the Rydberg orbital 
is optimized in the field of the core electrons, but the core is not 
optimized in the field of the Rydberg electron. This partial 
Brillouin theorem is an essential feature of a meaningful per­
turbation expansion because otherwise there would exist excitations 
with small energy denominators, e.g., |ek* - «k| < 0.1 eV. As it 
is, no contributions to ^ k ' have energy denominators appreciably 
smaller than the HOMO-LUMO gap, which for NH4

+ is 23.4 
eV. The total contribution to the second-order energy correction, 
£k

2, from all double excitations out of pairs of core orbitals is 
sizable. Although this can be important for, e.g., computation 
of proton affinity, it is of no importance for Rydberg spectroscopy 
since such double excitations make the same contribution to all 
Rydberg states. On the other hand, the smaller contribution from 
double excitations out of core-Rydberg pairs (dynamic core po­
larization) can be expected to perturb Rydberg spacings and so 
constitutes one of the important corrections not included in the 
calculations reported in this paper. In spite of these deficiencies 
in the frozen-core model, we solve the zeroth-order equations to 
high accuracy because they provide the foundation for the cal­

culation of higher-order perturbation corrections to be reported 
in paper 3 of this series. 

Computation of Virtual Orbitals. The traditional Roothaan 
closed-shell SCF procedure16 is modified to permit use of two 
different orbital basis sets. The first set ( x /k = 1. 2,..., nc\ defines 
the core space. Another larger set contains many diffuse functions 
in addition to functions in the core region. This we refer to as 
the Rydberg basis \xM = 1, 2, ..., n). The core basis, not nec­
essarily a subset of the Rydberg basis, is used with the usual SCF 
iterative procedure to generate core orbitals, c£c„ and the Fock 
operator f for the ammonium ion. The computer program then 
retains these SCF results, reads in the Rydberg basis, and forms 
matrices F, S, and B with elements 

f.P = <X.|f|x„> (H) 

S,p=<X„IXp> (12) 

B.(={xM°i) d3) 

An orthonormal Rydberg basis is then defined by the transfor­
mation matrix Q which satisfies 

QfSQ = I (14) 

Q+B = O (15) 

An algorithm for constructing a suitable Q matrix is given in the 
Appendix. Virtual orbital energies are obtained by diagonalizing 
the transformed Fock matrix. 

(Q+FQ)V = Vt (16) 

where V is unitary. The coefficient matrix for the virtual mo­
lecular orbitals is given by 

C = QV (17) 

where 

0k = £ X,C,k (18) 
1 7 - 1 

Note that eq 15, 17, and 18 assure that 0k is rigorously orthogonal 
to all core orbitals. One could, alternatively, eliminate eq 15 and 
simply discard the five lowest eigenvalues and their vectors ob­
tained in eq 16. The two methods are equivalent in the limit of 
complete basis sets; otherwise, our method provides an improved, 
i.e., lower, upper bound on the lowest virtual level of each sym­
metry. 

The computer program is a modification of the HONDO SCF 
code.17 All two-electron integrals (XaXpllxM

cX,c) and (x„x/llx„XxC) 
are accurately evaluated and used without being stored on an 
integral file. As each integral is generated, it is multiplied by the 
appropriate density matrix element and added into F,p. Point 
group symmetry is used to reduce the number of integrals com­
puted.18 Special subroutines are employed for very fast com­
putation of single-center integrals. These techniques permit use 
of very large Rydberg bases which would otherwise be prohibitively 
expensive. 

Basis Sets. Our %„ are contracted Cartesian Gaussian basis 
functions. 

X„ = x m ; y V 2 E i , exp(-a,r2) 

We denote a set of primitives by round bracket notation, (/), and 
a set of contracted functions by square brackets, [/]. Functions 
to the left of the solidus are located on nitrogen, and those to the 
right on hydrogen. A d shell or f shell contains 6 or 10 functions, 
respectively. Our standard core basis is an (1 ls,7p,2d/5s,2p) set 
contracted to [6s,lp,ld/3s,2p] giving nc = 51. This is a Dunning 
(10s,6p) set19 augmented with a double set of polarization functions 

(16) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951). 
(17) M. Dupuis, J. Rys, and H. F. King, QCPE, 12, 336 (1977); /. Chem. 

Phys., 65, 111 (1976). 
(18) M. Dupuis and H. F. King, Int. J. Quantum Chem., 11, 613 (1977). 



6 J. Am. Chem. Soc, Vol. 105, No. 1, 1983 

Table I. Standard 51-Term Gaussian Core Basis Set (lls,7p,2d/5s,2p) Contracted to [6s,lp,ld/3s,2p]a 

Havriliak and King 

1 

2 
3 

4 

5 
6 

7 
8 

9 

10 

11 

12 

s-typ 

«i 

13520 

1999 
440 

120.9 

38.47 
13.46 

13.46 
4.993 

1.569 

0.5800 

0.1923 

0.0222 

nitrogen-centered functions 

e 

bi 

0.000 760 

0.006 076 
0.032 847 

0.132 396 

0.393 261 
0.546 339 

0.252036 
0.779 385 

1.0 

1.0 

1.0 

1.0 

"i 

35.91 

8.480 
2.706 

0.9921 

0.3727 
0.1346 

0.0486 

p-type 

bi 

0.005 383 

0.032642 
0.103 579 

0.209 917 

0.253 004 
0.088131 

-0.005 773 

d 

ai 

1.3600 

0.4000 

•type 

bi 

0.013 765 

0.019658 

hydrogen-centered functions 

S 

"i 

33.640 

5.0580 
1.1470 

0.3311 

0.1013 

type 

bi 

0.025 374 

0.189 684 
0.852933 

1.0 

LO 

p-type 

a,- bt 

1.6500 1.0 

0.5500 1.0 

a Nitrogen p and d contraction coefficients are those for T^ symmetry with .R^H = 1.0098 A. 

Table II. Standard 149-Term Gaussian Rydberg Basis Set (20s,13p,lld/5s,lp) Contracted to [20s,13p,lld/3s,lp] 

s-type 

nitrogen-centered functions 

p-type d-type 

hydrogen-centered functions 

s-type p-type 

1 18570 
2 6632 
3 2369 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

846.0 

302.1 
107.9 
38.54 
13.76 
4.915 
1.756 
0.6400 
0.3200 
0.1600 
0.0800 
0.0400 
0.0200 
0.0100 
0.0050 
0.0025 
0.0013 

69.13 
28.80 
12.00 

5.001 

2.084 
0.8681 
0.3617 
0.1507 
0.0628 
0.0340 
0.0170 
0.0085 
0.0043 

3.115 
1.298 
0.5408 

0.2253 

0.0939 
0.0391 
0.0163 
0.0064 
0.0032 
0.0016 
0.0008 

33.64 
5.058 
1.147 

0.025 374 
0.189 684 
0.852 933 

1.2000 1.0 

0.3311 LO 

0.1013 1.0 

a Principal quantum number. 

on nitrogen and hydrogen plus an extra diffuse s and p shell on 
nitrogen to improve the tails of the core orbitals. Exponential 
parameters, at, and contraction coefficients, bb are given in Table 
I. Under Td symmetry the 7p shells can be completely contracted 
without error. The two d shells have been assigned contraction 
coefficients corresponding to their values in the t(2p) orbital. This 
reduces the size of the density matrix which defines the Fock 
operator, and raises the computed value of E00^ by only 36 
Mhartree. The p- and d-type contraction coefficients reported in 
Table I are optimized for NH4

+ in Td symmetry with i?NH = 
1.0098 A. They are reoptimized for each new value of/?NH; and 
for less symmetric geometries the p and d contraction scheme is 
relaxed accordingly. For example, an unsegmented [3p,2d] 
contraction is used when NH4

+ is distorted to C30 symmetry. In 
these cases, the p,d contraction error for E00n is a small fraction 
of 1 /uhartree. 

Our standard Rydberg basis is the 149-term [20s,13p,l Id/ 
3s,Ip] set described in Table II. The nitrogen basis is uncon-
tracted. The hydrogen s set is the same as that in the core basis. 

(19) T. H. Dunning, Jr., J. Chem. Phys., 55, 716 (1971). 

The nitrogen (20s) set consists of 10 even-tempered functions20 

with an exponent ratio of 2.8, plus 10 more diffuse functions with 
ratio 2.0. These parameters were varied to minimize the lowest 
Rydberg a-type orbital energy, probably to within a few micro-
hartrees of its limiting value. Note that exponent ratios decrease 
with increasing quantum number as found by Jungen.2' The third 
column of Table II indicates that two primitives describe the outer 
radial peak of the 4s function and two others describe the 5s radial 
peak. This assignment is based on the relative signs of the Cffk 

coefficients. It is also consistent with the computed radii of the 
Rydberg orbitals and the a, values of the individual primitives. 
Note that the exponential parameter in an /-type primitive is 
related to its root mean square (rms) radius according to 

<r2) ' /2= [ (2 /+3) / (4a , ) ] ' / 2 

The (13p) set consists of nine even-tempered functions with an 
exponent ratio of 2.4, plus four more with ratio 2.0. These pa­
rameters were varied to minimize the lowest t2-type Rydberg 

(20) R. C. Raffenetti, J. Chem. Phys., 58, 4452 (1973); M. W. Schmidt 
and K. Ruedenberg, ibid., 71, 3951 (1979). 

(21) M. Jungen, J. Chem. Phys., 74, 750 (1981). 
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Table III. Comparison of Frozen-Core and Experimental 
Ionization Energies (in cm"1) for the Sodium Atom in Rydberg 
States with Quantum Numbers n and / 

n 

3 
4 
5 
6 

3 
4 
5 
6 

3 
4 
5 
6 

0 

39893.9 
15 385.8 

8 128.8 
5 018.6 

41449.7 
15 709.8 

8 249.0 
5 077.0 

1555.8 
324.0 
120.2 
58.4 

I = 

1 2 

Frozen-Core Model" 
24015.5 12217.2 
11043.1 6872.8 
6 349.3 4 397.7 
4 122.0 3 051.9 

Experiment6 

24 482.0 12 276.8 
11179.1 6 900.9 
6407.7 4412.9 
4 152.3 3 062.4 

Experiment - Theory 
466.5 59.6 
136.0 28.1 

58.4 15.2 
30.3 10.5 

3 

6858.6 
4389.9 
3048.2 

6861.0 
4392.0 
3049.6 

2.4 
2.1 
1.4 

4 

4389.5 
3048.2 

4389.5 
3048.2° 

0.0 
0.0 

" Negative virtual orbital energy of sodium ion, -e. 1 hartree = 
219475 cm"1. b From ref 22 averaged over spin-orbit multiplets. 
c This number does not exist in Moore's tables and was estimated 
by using the Rydberg formula. 

orbital energy. The d-type basis was similarly constructed. The 
s-type subspace of the (lid) set strongly overlaps the space of the 
(20s) set. As a result, three linear combinations of nearly re­
dundant functions are discarded as described in the Appendix. 
Tests indicate that truncation errors for this basis set are not 
greater than 10 ^hartree for any orbital energy up through the 
5s level. To achieve this precision it is necessary, even for Rydberg 
orbitals, to accurately describe the inner radial peaks using many 
Gaussians with large a, values as indicated in Table II. Just two 
primitives per principal quantum number appear to be adequate 
for outer radial peaks. 

For certain test calculations discussed below, we employ a third 
basis set with the description [20s,lp,ld,5f/3s,2p]. This set of 
121 functions is obtained from the standard core basis by sub­
stituting the nitrogen (20s) set for the usual [7s] set and by adding 
five shells of f-type functions on nitrogen with the following ex­
ponents: (1.8, 0.4, 0.1,0.03, and 0.01). This very nearly saturates 
both the core space and the a-type Rydberg space under Td 

symmetry. 

III. Results 
Sodium Atom. It is of interest first to compare frozen-core 

energies with spectroscopic-term values for the sodium atom which 
is, of course, the united atom (UA) limit for the ammonium 
radical. The top block of Table III reports negative virtual orbitals 
energies, -«, for the Na+ ion computed as described in section II. 
Experimental ionization energies from Moore's tables22 (averaged 
over spin-orbit multiplets) are given in the second block of Table 
III. One observes, empirically, that the frozen-core model provides 
an upper bound on the true energy level of each Rydberg state 
of the sodium atom and that theoretical and experimental values 
coincide in the ionization limit. This is what one would expect 
if the perturbation expansion were rapidly convergent. As shown 
in the last block of Table III, the energy error is 1556 cm"1 (0.193 
eV) for the 3s state and the error decreases smoothly with in­
creasing principal or angular momentum quantum number. For 
2G states the theory agrees with experiment to within 0.1 cm"1. 

The Rydberg basis consists of a (20s,20p,10d,10f,10g) set of 
Gaussians. Tests indicate that the Rydberg orbital energies have 
converged to within 10 cm"1 of their limiting values. The core 
basis is a high-quality Gaussian (12s,8p) set giving E60n = 
-161.67626 hartree. This can be compared with dementi's23 

(22) C. E. Moore, "Atomic Energy Levels", Vol. I, National Bureau of 
Standards, Washington, DC, 1949, NBS Circular No. 467. 

(23) E. Clementi, "Tables of Atomic Functions", supplement to J. Res. 
Dev., 9, 2 (1965), see Table 17-1. 

value, £SCF(Na+) = -161.67676 hartree, obtained by using a 
(5s,4p) Slater basis optimized for Na+. Virtual orbital energies 
are reasonably insensitive to the quality of the core orbitals defining 
the Fock operator. For example, replacing our (12s,8p) set by 
a (10s,5p) core, giving E00^ = -161.60725 hartree, shifts the 
calculated 3s orbital energy level by only 94 cm"1. No other levels 
are shifted as much as 17 cm"1. In other words, the virtual orbital 
energy shifts are at least 2 orders of magnitude smaller than the 
shift in the EmK value. 

Ammonium Radical. Table IV reports Rydberg orbital prop­
erties for the ammonium radical computed under Td symmetry 
with N-H bond length equal to 1.0098 A. Our standard 51-term 
core and 149-term Rydberg bases were used. The table lists orbital 
symmetries followed by the corresponding UA designation in 
parentheses. Energy values (in hartrees) are computed by eq 16. 
The rms orbital radius (in bohrs), the angular momentum, and 
the Coriolis coupling constant are each computed as the appro­
priate integral over the occupied Rydberg orbital. 

(19) 

(20) 

(21) 

( r 2 ) ' / 2 = (<t>k\r
2\<t>ky'2 

(L2) = h-2(4>k\L^) 

r = h-H4>k\Lz\4>k) 

This last expectation value (eq 21) is sensitive to choice of phase. 
For triply degenerate representations we define <f>k to be the 
complex orbital which transforms under Td like spherical har­
monics F1 , and Y2-\. This convention12 leads to ' 2,-1 

f "(*JX|;-^K) (22) 

where [<j>„ 4>y, <f>z] are the real MO's which transform like \x, y, 
z). The orbital angular momentum properties are obviously very 
close to their UA values. In the 2T2(3p) state, for example, the 
(L2) and Rvalues are about what one would expect of an almost 
pure atomic p orbital with 0.3% d character. The quantum defect, 
&nk, is obtained from the orbital energy according to 

«k = -1M* - ^ r 2 (23) 

where nk is the principal quantum number. Column six in Table 
IV reports the amount (in angstroms) by which the equilibrium 
N-H bond length is increased for each Rydberg state when the 
radical is constrained to have Td symmetry. This was computed 
by repeating the calculation for four different N-H bond lengths, 
fitting E00n and ek by polynomials, and determining the minimum 
of Ek

¥C defined by eq 10. Thus, the predicted equilibrium bond 
length is 

Rk = 1.0098 A + 5Rk (24) 

In the absence of electron correlation corrections we suspect that 
the predicted shifts are more meaningful than the absolute bond 
lengths themselves. 

An f-type shell on nitrogen contains an alt th and two t2 com­
ponents under Td symmetry and so contributes to all core orbitals 
and to most low-lying Rydberg MO's. A final test was carried 
out to determine the effect of adding such functions to our core 
and Rydberg bases. It also serves to check our method of com­
puting virtual orbitals. A conventional (single basis) Roothaan 
SCF calculation was performed by using the 121-term basis de­
scribed above. It contains two f shells optimized for the core and 
three more in the 3s and 4s region. If the ammonium radical is 
inscribed in a cube, then an fxyx function has SL1 symmetry and 
can shift probability density from the four vacant cube corners 
to the other four corners where the protons are located. Results 
of the test calculation are compared in Table V with results using 
our standard bases. The Emn value has been lowered by almost 
1 mhartree to give a record-breaking value £SCF = -56.566521 
hartree for the ammonium ion, but the first Rydberg orbital 
energy, e3s, has been lowered only 8.6 ^hartree (2 cm"1). Other 
orbital properties are also little affected by f-orbital contributions. 
For example, the increase in angular momentum expectation value 
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Table IV. Rydberg Orbital Properties for the Ammonium Radical Computed Using Standard Bases" 

orbital 

a,(3s) 
t,(3p) 
a, (4s) 
t2(3d) 
e(3d) 
t,(4p) 
t2(4d) 
aj(5s) 
e(4d) 

^k 

-0 .146579 8 
-0.093 427 0 
-0 .061129 8 
-0 .059 796 2 
-0.056 349 7 
-0.044 893 7 
-0.033 766 7 
-0.033 497 9 
-0 .0317281 

(^)"2 

5.612 
7.784 

13.13 
9.869 

10.95 
16.81 
20.26 
23.78 
22.01 

aJ> 
0.0751 
2.0133 
0.0307 
5.9707 
6.0003 
2.0338 
5.9706 
0.0147 
6.0002 

? 

0.0 
0.9940 
0.0 

-0.9764 
0.0 
0.9834 

-0.9794 
0.0 
0.0 

SRk 

0.006 20 
-0.00150 

0.00169 
0.002 61 

-0 .00013 
-0.000 57 

0.00144 
0.000 64 

-0.000 05 

S"k(NH4) 

1.1531 
0.6866 
1.1400 
0.1083 
0.0212 
0.6627 
0.1520 
1.1365 
0.0303 

6«k(Na) 

1.3415 
0.8624 
1.3293 
0.0030 
0.0030 
0.8477 
0.0041 
1.3258 
0.0041 

0 See eq 19-23. Geometry is Td withi?NH = 1.0098 A. Orbital energy in units of hartrees;rms radius in bohrs; bRk in angstroms. 

Table V. Results of Test Calculation Using f-Type Functions in 
the Core and Rydberg Basis and Comparison with Results Using 
Standard Bases0 

core basis 

Rydberg basis 

f 
e i s 

e2P 

e 5 S 

<rW2 

<>-2>4s"2 

< r 2 > 5 S " 2 

a5>3 S 
0"2>4S 

<£ 2 > 5 S 

[20,1,1,5/3,2] 
« c = 1 2 1 

[20,1,1,5/3,2] 
« = 121 

-56.566521 
-15.936445 
-1.556382 
-1.007730 
-0.146588 
-0.061126 
-0.033504 
5.6129 
13.1274 
23.7706 
0.0777 
0.0329 
0.0370 

[6,1,1/3,2] 
«c = 51 

[20,13,11/3,1] 
« = 149 

-56.565547 
-15.936618 
-1.556210 
-1.007805 
-0.146580 
-0.061130 
-0.033498 
5.6122 
13.1267 
23.7831 
0.0751 
0.0307 
0.0147 

a Geometry is Td wi th£ N H = 1.0098 A. 

implies that the f functions contribute only 2X10"4 fractional 
/ = 3 character to the 3 s and 4s orbitals. This contribution rises 
to 2 parts per thousand for the 5s MO, even though the range 
of a, values does not quite extend into the 5s region. This probably 
reflects the smaller gap between 4f and 5s energies. The test 
calculation actually gives 4̂8 to be 4.2 /ihartree above that obtained 
with the standard bases. This is probably due to omission of the 
diffuse d functions. We conclude that lack of f-type polarization 
functions in our standard bases is of little importance. 

Table VI lists all transitions terminating in one of the five lowest 
Rydberg levels. Two different calculated frequencies are reported 
for each transition. The frozen-core-model prediction is the 
difference of orbital energies from Table IV converted to wave-
number units. Just beneath that is given a "corrected value" 
obtained by assuming that the correction to the frozen-core energy 
is independent of N-H bond length, i.e., is that given at the bottom 
of Table III. For example, we show the arithmetic for the 2T2(3d) 
—• 2A1 (3s) transition. 

v = 219475(0.1465798 - 0.0597962) + 1556-60 = 
20543 cm"1 (25) 

The third entry for each transition is the dipole transition moment 
computed by using our frozen-core orbitals. 

Vibronic Effects. Tables VII and VIII describe the variation 
of E^1. and ek, respectively, accompanying small displacements 
from the reference geometry. For very small vibrational distortions 
£k

FC varies linearly due to changes in the orbital energy. This 
is responsible for the small shifts in i?NH discussed above, the 
splitting of degenerate electronic states, and associated static 
Jahn-Teller distortion. Both E^,. and ek give rise to quadratic 
terms in the £'k

FC potential energy function, but the dominant 
contribution to harmonic force constants is always the E01n term. 
First we discuss .E00n, and then return to orbital energy effects. 

Yamaguchi and Schaefer24 have carried out a thorough study 
of harmonic force constants for NH4

+, methane, and related small 

(24) Y. Yamaguchi and H. F. Schaefer, J. Chem. Phys., 73, 2310 (1980). 

Table VI. Frozen-Core Frequencies and Transition Moments for 
the Ammonium Radical" 

lower state 

upper state 

2E(4d) 

3A,(5s) 

4T2(4d) 

3T2(4p) 

lE(3d) 

2T2(3d) 

2A1 (4s) 

lT2(3p) 

IA1Os) 

25207 
26735 
0 
24819 
26254 
0 
24760 
26287 
0.037 
22318 
23737 
0.278 
19803 
21300 
0 
19047 
20543 
0.091 
18754 
19986 
0 
11666 
12755 
3.199 

IT2Op) 

13541 
13980 
0.498 
13153 
13499 
0.658 
13094 
13532 
0.022 
10652 
10982 
0.242 
8138 
8544 
3.942 
7381 
7788 
3.374 
7088 
7231 
3.001 

2A1 (4s) 

6453 
6749 
0 
6065 
6268 
0 
6006 
6301 
0.297 
3563 
3751 
6.871 
1049 
1314 
0 
293 
558 
0.620 

2T2Od) 

6160 
6192 
0.246 
5772 
5711 
0.122 
5713 
5744 
0.389 
3271 
3194 
2.665 
756 
756 
0.494 

lE(3d) 

5404 
5435 
0 
5015 
4955 
0 
4956 
4988 
0.105 
2514 
2438 
3.973 

" For each entry the top number is the frequency in cm"' from 
Table IV. The next entry is a corrected frequency computed as 
in eq 25. The third entry is the transition moment in units of 
bohrs. 

Table VII. Comparison of Calculated Bond Length and Force 
Constants for the Ammonium Ion with Relevant Literature Values 

F a 

F 
F31 

F„ 
F3, 
Rc 

-^SCF 

NH4
+ 

this work EBS SCFb 

7.604 7.556 
0.684 0.679 
7.420 7.400 
0.655 0.649 
0.174 0.166 
1.0097 1.0107 
-56.56555 -56.56453 

CH4 

EBS SCFb 

5.898 
0.553 
5.698 
0.527 
0.205 
1.0823 
-40.21383 

expt 

5.842 
0.486 
5.383 
0.458 
0.206 
1.0858 

a Harmonic force constants in units of mdyn/A. b Extended 
basis set SCF results from ref 24. c Equilibrium bond length in 
angstroms. 

molecules and have discussed basis set effects and correlation 
corrections. To establish a link between our work and theirs we 
calculated SCF harmonic force constants for NH4

+ using our 
standard core basis. We find the optimum N-H bond length to 
be 1.0097 A (just 0.0001 A less than our chosen reference ge­
ometry). This is 0.001 A less than the J?NH value obtained by 
using their extended basis set (EBS). Our EmK value, -56.56555 
hartree, is a slight improvement over their EBS-SCF energy of 
-56.56453 hartree. As reported in Table VII, the two studies give 
very nearly the same SCF harmonic force constants. Since ex­
perimental gas-phase data are not available for NH4

+, we thought 
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Table VIII. First and Second Derivatives of Orbital Energies with Respect to Vibrational Distortion along Standard Symmetry Coordinates0 

UA 

3s 
3p 

4s 
3d 

3d 

4p 

4d 

5s 
4d 

orbital symmetry 

Td 

a i 

t2 

a i 

t2 

e 

t2 

t2 

a i 

e 

^ core 

*~3V 

a l 
a l 
e 
a i 
a i 
e 
e 

a, 
e 
a i 
e 
a i 

e 

^ d 

a i 

b , 
e 
a i 

b, 
e 
a, 

b, 
b , 
e 
b , 
e 
a i 
a i 

b, 

Td, A1 

Be/aS, 

-21000 
4780 
4780 

-6240 
-9390 
-9390 

25 
25 

1560 
1560 

-5410 
-5410 
-2650 

- 2 6 2 
-262 

427 

stretch = St 

3 se/35,2 

-86 000 
- 1 5 300 
- 1 5 300 
- 2 3 500 
- 2 3 700 
- 2 3 700 

991 
991 

- 5 440 
- 5 440 

- 1 1 8 0 0 
- 1 1 8 0 0 

- 9 5 7 0 
25 300 
25 300 

1 744 000 

C T 
U 3U> x 2 

3e /3S 3 

0 
-5260 

2630 
0 

-16600 
8300 

0 
0 

-1430 
717 

-9100 
4550 

0 
0 
0 

0 

stretch = S3 

3 V a S 3
2 

-106 000 
- 1 7 200 
- 1 3 700 

-301000 
-179 000 

- 1 3 6 0 0 
6 140 
6140 

- 2 5 200 
- 5 230 

-324 000 
- 5 760 

170 000 
2530 
2530 

1702 000 

^3l?> 1 2 

3e/354 

0 
-5280 

2640 
0 

416 
-208 

0 
0 

-1570 
783 
718 

-359 
0 
0 
0 

0 

bend = S4 

3 2 e /3S 4
2 

-14900 
-2930 

-236 
-17900 

6860 
-3870 

3520 
3520 
-875 
-194 

-20700 
-1730 
15000 

1330 
1330 

150200 

£>2d ,Ebend = S2 

3e/3S2 

0 
8060 

-4030 
0 

-9000 
4500 
2360 

-2360 
2400 

-1200 
-4940 

2470 
0 

1010 
-1010 

0 

32e/3S2
2 

-5830 
-3450 

127 
-4410 

-14400 
-1370 

406 
- 5 1 

-913 
0 

-16100 
-659 
5500 

608 
0 

156900 
a Derivatives computed at reference geometry (Td symmetry with.RNH = 1.0098 A) by using standard basis sets. First and second deriva­

tives in units of/ihartree/A and ,uhartree/A2, respectively. 1 hartree = 4.3598 mdyn A. 

it would be useful to include in Table VI a comparison of ex­
perimental and theoretical harmonic force constants for the 
isoelectric methane molecule. For references and further discussion 
the reader is referred to the paper by Yamagouchi and Schaefer.24 

The symmetry coordinates for vibration of a tetrahedral 
molecule may be expressed in terms of internal displacement 
coordinates as follows: 

S1 = Y2[AR1 + AJJ2 + AR3 + AR4] (26) 

5*2 = i?012"1/2[2Ae12 + 2Ac)34 - At)13 - Ad24 - Af)14 - Af)23] 
(27) 

S3 = 12-'/2[3AT?! -AR2- AR3 - AR4] 

S4 = R06-l'2[A6n - Af)34 + Af)13 - Af)24 + Af)1, At), 

(28) 

(29) 

where R0 is the reference bond length, R0 = 1.0098 A. The S1, 
S2, S3, and S4 coordinates define the a rtype symmetric stretching, 
the e-type bending, the t2-type asymmetric stretching, and the 
t2-type bending displacements, respectively. Our S1 and S2 are 
identical with the standard coordinates of Easterfield and Linnet,25 

and our S3 and S4 are obtained by a unitary transformation of 
their coordinates for the triply degenerate modes. 

S3 = 3-'/2(S3a + S3b + S3c) 

S4 = i?03~ ' (S4a + S4b + S4c) 

(30) 

(31) 

Distortion along S2 lowers the symmetry from Td to D2d, and 
distortion along S3 or S4 to C31,. 

The core and orbital energy components of the frozen-core 
energy are, of course, functions of the symmetry coordinates 

£ k
r c(S) = EK .(S) + €k(S) (32) 

and may be expanded in a Taylor series about the reference 
geometry. Table VIII reports the appropriate linear and quadratic 
terms. The Emn values given in the last time of the table lead 
immediately to the NH4

+ force constants reported in Table VII. 
Similarly, one obtains force constants for the ammonium radical 
in its various Rydberg states by adding the appropriate orbital 
contribution, d2e/dSm

2, to the E00n value listed at the bottom of 
the same column of the table. For example, in this way one 
computes harmonic force constant F33 = 6.108 mdyn/A for the 
22A1 (4s) state. This value can be compared with F33 = 7.420 
mdyn/A for the ion. This is one of the largest calculated deviations 

(25) J. R. Easterfield and J. W. Linnett, J. Chem. Soc, Faraday Trans. 
2,70, 317 (1974). 

from ion force constants and is in line witth other pathological 
behavior of the 22A1^s) state to be discussed below. 

The small shifts in N-H bond lengths described by eq 24 and 
reported in Table IV may be computed from information in Table 
VIII as follows: 

sj?k = y2s 
I" d (£ c o r e + t k ) "J [ d2(£core + *k) 1 " 

(33) 

The corresponding shift in the frozen-core energy is 

£ k
F C (S^) = £k

FC(0) + 28Rk[d(ECOTe 4- ^/3S1] (34) 

Thus, relaxing the N-H bond length lowers E3s
¥C by only 128 

/uhartree (28 cm"1), and the effect is smaller yet for other Rydberg 
states. 

Similarly, one can compute geometry changes and energy shifts 
for symmetry-breaking distortions in degenerate Rydberg states, 
i.e., Jahn-Teller effects. For example, a triply degenerate bend 
lifts the degeneracy of the l2T2(3p) state. The A1 component 
(under Civ symmetry) has minimum energy when S4 = 0.0359 
A. This corresponds to a 5° change in HNH bond angles and 
a Jahn-Teller energy shift 

AEr 
_ „ [ a«k ]2\ a2dw + *k) 1" 
= / 2 U M L 5^2 J 

(35) 

of 95 ^hartree (21 cm"1). No AEn values computed by using 
eq 35 and the data in Table VIII turn out to be as great as 65 
cm"1. 

The most important vibronic effects are likely to be associated 
with mixing of nearly degenerate Rydberg orbitals during a vi­
brational distortion. For example, one notes from Table IV that 
the 22T2(3d) state lies only 1334 ^hartree (293 cm"1) above 
22A,(4s). According to Table VIII this T2 level splits into A and 
E components under an asymmetric stretching distortion, and the 
A component descends steeply toward the lower 22A1 (4s) state. 
Figure 1 describes the relevant orbital energies in the vicinity of 
the avoided crossing. The horizontal scale measures displacement 
of the unique hydrogen atom, AR1. From eq 28 one notes that 
this is proportional to the amplitude of the symmetry coordinate 
S3. 

AR1 = (3/4J1Z2S3 

AR2 = AR3 = ARA = -1Z3AR1 

(36) 

(37) 

Orbital energies computed for AR1 = -0.9-0.09 A are shown in 
Figure 1. The solid curves in the figure have been fitted to these 
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T- Stretch Distortion A 
Figure 1. Variation of the a[(4s) and t2(3d) orbital energies as a function 
of asymmetric stretching distortion. The Td symmetry is reduced to C31, 
thereby splitting the degenerate t2 level into its a(3d) and e(3d) compo­
nents. The a(3d) component mixes with the lower a(4s) level. Dashed 
curves are energies of hypothetical unmixed orbitals. An avoided crossing 
occurs when the unique N-H bond is elongated 0.072 A. Dots represent 
orbital energies computed directly from eq 16. Solid curves are the fitted 
orbital energies computed for a(4s) and a(3d) by using eq 38. Energy 
values are given in millihartree units. Horizontal scale measures internal 
coordinate AR1 in units of angstroms. 

points assuming that the interaction of the a(4s) and a(3d) orbitals 
can be described by a 2-by-2 mixing matrix. 

(MnM1 
\M. 

• M11X 
>Mj 

cos a 
-sin a 

sin a 
cos a 

cos a 
-sin a 

sin a 
cos a 

0 
e 3 d 

(38) 

By definition a(S3) measures the orbital mixing due to this sym­
metry-breaking distortion and is zero for Td symmetry. The 
diagonal elements Mn(S3) and M2 2(S3) are the energies of the 
hypothetical unmixed a(4s) and a(3d) orbitals, respectively. The 
off-diagonal element, Af12 = M2 1 , is the interaction energy which 
is zero, by definition, when S 3 = 0. We represented the e-type 
orbital energy component and each of the Mtj elements by low-
order polynomials in S3. The 20 data points in Figure 1 were fitted 
with nine parameters (three of which were determined immediately 
from the known orbital energies and their first derivatives at S3 

= 0). The dashed curves in Figure 1 describe the diagonal matrix 
elements. Note that they coincide when AJJ1 = 0.072 A, at which 
point the interaction energy is computed to be M 1 2 = 275 cm"1. 
Note further that the amount of mixing varies from a = 0 (none) 
to a = i r /4 (complete) over the range of a typical vibrational 
amplitude. 

Although the mixing parameter a(S3) in eq 38 has been de­
termined by fitting energies, it has significance for other properties 
as well. Let us assume, as a rough approximation, that the ex­
pectation value of L? is zero for the hypothetical unmixed a(4s) 
orbital and 6h2 for the unmixed a(3d) orbital. Then we predict 
that the actual (mixed) a(4s) and a(3d) orbitals should have the 
following expectation values: 

h-2(L2)M « 6 sin2 a 

h2(L2)3i * 6 cos2 a 

(39) 

(40) 

It can be seen from Figure 2 that expectation values predicted 
by the frozen-core model are in qualitative agreement with this 
simple model. 

Table IX. Dipole Transition Moments for Three Rydberg 
Transitions of the Ammonium Radical Distorted along the 
Asymmetric Stretching Coordinate, S3 

AR1
0 

-0 .09 
-0.06 
-0.03 

0 
0.03 
0.06 
0.09 

transition moments, 

A(4s) -> 
A(3s) 

-0.034 
-0.035 
-0.027 

0.0 
0.076 
0.157 
0.237 

A(3p)-> 
A(3s) 

3.100 
3.134 
3.167 
3.199 
3.229 
3.253 
3.271 

bohr 

A(3d)-> 
A(3s) 

0.011 
0.033 
0.059 
0.091 
0.102 
0.081 
0.061 

0 Internal coordinate, in angstroms, defined in eq 36 and 37. 

The transition moments reported in Table VI are computed for 
a vertical transition at the reference geometry. To treat vibronic 
intensities requires knowledge of these moments as a function of 
vibrational distortion coordinates. We do not attempt a complete 
analysis but present in Table IX just a sample of the available 
information. For each of the states discussed in Figures 1 and 
2 we report the dipole transition moment for a vertical transition 
to the ground-state surface. Dipole selection rules for tetrahedral 
molecules forbid electronic transitions between two A states, but 
these become vibronically allowed when combined with a T2-type 
vibrational transition. For example, 22A1 (4s) in its ground vi­
brational state is dipole coupled to I2A1(Ss) in its first excited 
v3 or Vi, vibrational mode. Table IX reports the relevant transition 
moment as a function of the asymmetric stretching coordinate. 
The function shows marked deviation from linearity implying 
vibronic transitions with Av = 1, 2 , . . . . However, all these tran­
sitions are predicted to be 2 orders of magnitude weaker than the 
strong l2T2(3p) —• I2A1(Ss) emission with Av = 0. The vibronic 
transition is predicted by this calculation to be comparable in 
intensity to the allowed but weak 22T2(3d) —* I2A1(Ss) transition. 

IV. Discussion 

With modern methods, it is possible to far surpass the accuracy 
of the one-center, ab initio calculations of Strehl et al.,5 but it is 
noteworthy that the ammonium radical Rydberg levels predicted 
in that early study are in qualitative agreement with ours. A much 
more significant comparison is possible with the very recent 
calculations of Raynor and Herschbach (RH), 1 5 b who also used 
the frozen-core model but in a Slater-type orbital (STO) basis 
with floating STO-Is functions "on" the hydrogen atoms. The 
N H 4

+ SCF energies provide one measure of the accuracies attained 
in these calculations, namely, the following: E00^ = -55.80859 
hartree, Strehl et al . ;5 E00n = -56.45886 hartree, Raynor and 
Herschbach;1 5 b E00n = -56.56453 hartree, Yamaguchi and 
Schaefer;24 E00n = -56.56555 hartree, this work, standard basis; 
E00n = -56.56652 hartree, this work, best SCF. The quantum 
defects reported by R H converted to orbital energies give e3s = 
148555 /uhartree, e4s = 58553 ^hartree, and e5s = 29820 /ihartree. 
These differ from ours, in Tables IV and V, by a few millihartrees. 
When our values are adjusted to i ? N H = 1.0208 A, the bond length 
used by R H , their e3s value lies 1492 ^hartree (327 cm"1) below 
ours. This discrepancy is 2 orders of magnitude smaller than the 
error in their E00n value, so we attribute it to their somewhat 
different H° operator. Their e4s and c5s values lie 2720 and 3739 
^hartree above our adjusted values. This is probably due to a 
combination of H° and Rydberg basis set deficiencies. All e- and 
t2-type orbital energies computed in the two studies agree to within 
220 cm"1. Consistent results have also been obtained by Wright.26 

Thus, three independent frozen-core-model calculations concur 
to within the expected precision. More serious questions remain 
concerning the accuracy of the model. It is certainly much more 
reliable for transitions involving one electron outside a closed shell 
than for ionization potentials of valence electrons.27 Table III 

(26) J. Wright, private communication. 
(27) I. Hubac and M. Urban, Theor. Chim. Acta, 45, 185 (1977). 
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Figure 2. Expectation value of L2 for a(4s) and a(3d) levels. Dots 
represent values computed directly from eq 20. Solid curves are com­
puted according to eq 39 and 40 by using a values from eq 38. Vertical 
scale is in units of h2. Horizontal scale measures internal coordinate AR1 
in units of angstroms. 

reports the corrections that must be applied for sodium. We expect 
that comparable corrections (1600 cm-1 or less) should be applied 
to the computed ammonium radical energy levels, as has been done 
in Table VI. In this connection it is noteworthy that assigned band 
origins for observed Rydberg transitions in triatomic hydrogen7"10 

all agreed with frozen-core-model predictions12 to within 1500 
cm"1 and that the theory gave satisfactory Coriolis coupling 
constants and Jahn-Teller parameters. The model appears to be 
considerably less reliable for spectroscopic intensities. Raynor 
and Herschbach make this same observation and point out that 
improved emission coefficients are obtained by using a valence 
bond formalism.15 

If one accepts the general validity of the preceding remarks, 
then it is difficult to reconcile our theoretical results with all of 
the available experimental observations on NH4 and ND4 radicals. 
Schiiler, Michel, and Grun28 and earlier spectroscopists (dating 
back to A. Schuster in the 19th century) have reported what 
appears to be a single band system with unresolved rotational 
structure observed in emission from ammonia in discharge tubes. 
The diffuse bands reported at 7666, 6497, 5672, 5639, and 5282 
A (13 040, 15 390, 17 630, 17 730, and 18 930 cm"1 respectively) 
were once attributed to NH3 and then later to (perhaps) N2H4. 
Recent investigation by Herzberg10 has established that these are 
features of the Rydberg spectrum of NH4, and he has given them 
the name "Schuster bands". The corresponding spectrum of ND4, 
which is sharper and more intense, exhibits broadened yet resolved 
rotational structure extending from 17 180 to 17 350 cm"1 with 
band origin in the vicinity of 17 240 cm"1. These correspond to 
the emission features observed near 5672 and 5639 A in NH4. 
The other NH4 features presumably also have their counterparts 
in the ND4 spectrum, but only a cursory discussion of these can 
be found in the literature.28 Herzberg has assigned the Schuster 
band to 2T2(3d) —• 2A1(Ss). The frozen-core model predicts this 
transition to be very weak and to occur at 19 047 cm"1. The 
1800-cm"1 discrepancy between theory and observation is dis­
turbing because corrections to the model are expected to lower 
the ground state more than the excited state thereby increasing 
the discrepancy to more than 3000 cm"1. On the other hand, there 
exists no reasonable alternative assignment. The 2A1 (3s) and 
2T2(3p) states are the only Rydberg levels with ionization energies 
greater than 17 000 cm"1 so one of these two must be the lower 
state for the transition. If it were 2T2(3p) then the upper state 
would have an unlikely high principal quantum number; fur­
thermore, it would be expected to exhibit a spin-orbit doublet (not 

(28) H. Schiiler, A. Michel, and A. E. Griin, Z. Naturforsch. A, 10, 
(1955). 

observed in the Schuster band). Herzberg argues that the observed 
PQR rotational structure corresponds to a Coriolis coupling 
constant near f = -1 implying d —• s character for the transition.10 

This is supported by our calculations; in particular, we calculate 
f = -0.9764 for the 2T2(3d) upper state. Diffuseness of the 
Schuster band is attributed to the finite lifetime of the metastable 
2A1 (3s) ground state. This is in conflict, however, with molecu­
lar-beam results which imply that the lifetime of the ground state 
is about 1 /iis,11 far too long to account for the observed line widths. 

A second band system, the so-called Schiiler band,10 is observed 
in the region 15 050-15 210 cm"1 in NH4, 14 810-14940 cm"1 in 
ND4. The rotational structure is much better resolved and 
spin-orbit doubling is observed. Herzberg tentatively assigns the 
Schiiler band to 2E(3d) -»• 2T2(3p). This is in serious conflict with 
the frozen-core model which predicts this transition to occur at 
8138 cm"1 (at 8544 cm"1 using the corrected value in Table VI). 
The doublet structure implies involvement of the 2T2(3P) so there 
seem to be only four likely candidates (numbers in parentheses 
are corrected frequencies computed by using eq 25: 2T2(3p) -* 
2A,(3s), 11666 cm"1 (12755 cm"1); 2E(4d) — 2T2(3p), 13 541 cm"1 

(13 980 cm"1); 2A,(5s) — 2T2(3p), 13 153 cm"1 (13 499 cm"1); 
2T2(4d) — 2T2(3p), 13094 cm"1 (13 532 cm"1). Herzberg rejects 
the 2T2Qp) —• 2A1 (3s) assignment on the basis of the narrow lines 
in the Schiiler band. Raynor and Herschback15b suggest this band 
be assigned to 2A1 (5s) or 2Ai(6s) —>- 2T2(3p). We have no way 
of distinguishing these candidates and defer the Schiiler assignment 
until paper 3 of this series. 

It is interesting to consider the possibility that the Schuster band 
terminates in the first excited vibrational state of the asymmetric 
stretching mode. This is thought to have a frequency24 of about 
3379 cm"1 in NH4 (probably near 2270 cm"1 in the ground state 
of the ND4 radical). One might further hypothesize that the 
Schiiler band terminates in the ground vibrational state of 2A1(Ss). 
This would resolve the conflict between spectroscopic and mo­
lecular-beam lifetimes and would bring the observed frequencies 
in line with theory. Perhaps the Schuster band is a vibronically 
allowed transition discussed in connection with Table IX. This 
would explain the absence of the corresponding Av = 0 transition. 
The rotational structure would be complicated by the vibrational 
as well as the electronic Coriolis coupling. A serious argument 
against this hypothesis is the isotope effect, i.e., the observation 
that the Schuster band in NH4 is observed 440 cm"1 to the blue 
of that in NH4. Our suggestion implies that it would be shifted 
about 900 cm"1 to the red, i.e., near 6130 A. 

V. Conclusion 
With large Gaussian basis sets it is possible to solve the fro­

zen-core model for excited states of NH4 to high accuracy, 
probably to within 10 cm"1. Serious conflicts arise in comparing 
the frozen-core-model, spectroscopic, and molecular-beam results. 
There is a need to extend the theory to include the following: (A) 
correlation energy corrections to frozen-core energies, particularly 
for Rydberg levels with principal quantum number n = 3, (B) 
correlation corrections to spectroscopic transition probabilities, 
(C) a reliable theoretical prediction of the lifetime of NH4 and 
ND4 in its metastable ground state. These topics will be the subject 
of future papers in this series. 
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Appendix 
Let A be the rectangular matrix obtained by applying a Schmidt 

process to B defined in eq 13. Let 

P s I - AA+ (Al) 

so that P is a projection operator that preserves the vector space 
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orthogonal to columns of B. In particular, P satisfies the equation 
PB = O (A2) 

Let U be a unitary matrix which diagonalizes the Hermitian 
matrix PSP where S is defined in eq 12. 

(PSP)U = UX (A3) 

Let Q be a rectangular matrix with elements 

Q, = W 2 (A4) 

where columns of Q are simply omitted if the corresponding 
eigenvalue X̂  is below some tolerance, e.g., X̂- > 1(T6. It follows 
that Q satisfies eq 14 and 15. 

Registry No. NH4, 14798-03-9; ND4, 83682-14-8; Na, 7440-23-5. 
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Abstract: The magnetic shielding tensors of the proton and carbon nuclei have been rationalized by coupled Hartree-Fock 
theoretical studies. Orbital contributions are systematically analyzed and electron current density maps are shown, indicating 
the typical paramagnetic axial vortex of cyclic molecules. Satisfactory agreement with experimental carbon chemical shift 
data has been found for cyclopropane. The results show that any ring current hypothesis in either of these molecules is misleading. 

Introduction 
In previous papers we attempted to rationalize the characteristic 

magnetic properties of cyclopropenyl cation1 and benzene2,3 by 
visualizing the stationary flow of electron density induced by a 
uniform magnetic field. 

The main features emerging from these studies1-3 are the 
following, (i) As a mere consequence of symmetry, all planar 
cyclic molecules are endowed with a paramagnetic axial vortex4,5 

due to o electrons flowing around the highest symmetry axis, (ii) 
In aromatic rings the intensity of such a vortex is high enough 
to overcome the diamagnetic "ring current" of r electrons, (iii) 
Quasi-toroidal vortices are found near each of the skeletal carbon 
atoms, perpendicular to the molecular plane, (iv) In benzene2,3 

the electron circulation in the neighborhood of each carbon deviates 
significantly from the shape of a perfect geometrical torus in such 
a way that the perpendicular component of carbon magnetic 
shielding is unusually upfield ((T33(C) « 190 ppm in benzene2. 

There is recent experimental evidence6 that nonaromatic rings, 
such as cyclopropane, are also characterized by an anomalous 
high-field value of C33(C). This paper sets out to explain this 
behavior in cyclopropenyl cation and cyclopropane through an 
analysis of theoretical nuclear shielding and electron density maps. 

Results and Discussion 
The theoretical approach and the computational scheme em­

ployed in this study have been previously outlined in detail.1-3 The 
Gaussian basis sets used in the calculation for the ion are the same 
as in a previous study,1 e.g., (Ils7p2d/5slp) contracted to 
[6SSpxSp^p2IdZSsIp]. The same primitive basis is used for cy­
clopropane, contracted to [6s5pld/3slp] (117 contracted func­
tions). The geometry assumed in the calculation is that adopted 

(1) Lazzeretti, P.; Zanasi, R. Chem. Phys. Lett. 1981, SO, 533. 
(2) Lazzeretti, P.; Zanasi, R. J. Chem. Phys. 1981, 75, 5019. 
(3) Lazzeretti, P.; Zanasi, R. Nuovo Cimento D 1982, /, 70; J. Chem. 

Phys. 1982, 77, 3129. 
(4) Riess, J. Ann. Phys. 1970, 57, 301; 1971, 67, 347; Phys. Rev. D 1970, 

2, 647; Phys. Rev. B 1976, 13, 3862. 
(5) Hirschfelder, J. O. J. Chem. Phys. 1977, 67, 5477; Heller, D. F.; 

Hirschfelder, J. O. Ibid. 1977, 66, 1929; Corcoran, C. T.; Hirschfelder, J. O. 
Ibid. 1980, 72, 1524. 

(6) ZiIm, K. W.; Conlin, R. T.; Grant, D. M.; Michl, J. J. Am. Chem. Soc. 
1980, 102, 6672; ZiIm, K. W.; Beeler, A. J.; Grant, D. M.; Michl, J.; Teh-
Chang Chou; Allred, E. L. Ibid. 1981, 103, 2119. 

in ref 1. For cyclopropane we retained the geometry of ref 10, 
as specified in Table I here. 

Since the polarization functions have exponents optimized for 
the magnetic properties, our self-consistent field (SCF) energy 
for C3H6, which is -117.089055 hartree, is =5 mhartree higher 
than the best previous value7, -117.0945. However, a number 
of results indicate the near-Hartree-Fock (HF) character of our 
wave function for cyclopropane. In particular, for the Arrighi-
ni-Maestro-Moccia (AMM) tensors,8 denoting the components 
parallel to the C3 axis by ||, we found (PM = 22.893; (P±,Px) 
= 22.601, i.e., «95% of the exact value of 24. Adopting a slightly 
different definition with respect to our previous paper9 for the 
magnetic perturbation, e.g., explicitly including the imaginary unit 
/, we introduce 

hH- = -(i/2c)la?yr^y 

h(dxtr>„ = - ( / / 2 c ) V 7 

/I*«(AO = -07c)ir - R N r 3 W ' - RK)^y 

possessing representations on the LCAO basis 

(D 

(2) 

(3) 

( I ' ) 

(2') 

(3') W-(N) = H"« 

The (P,P) tensor is defined as 

(Pa,Pfi) = -8c2TrH(^^»R<^^* (4) 

and satisfies the sum rule (5), valid for exact HF functions 

(pa,p0) = jva„ (5) 

Owing to the form of the exact coupled Hartree-Fock (CHF) 
perturbed orbitals, it can be easily shown that (5) is a direct 

(7) Amos, R. D.; Williams, J. H. Chem. Phys. Lett. 1981, 84, 104. 
(8) Arrighini, G. P.; Maestro, M.; Moccia, R. J. Chem. Phys. 1968, 49, 
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